Entretien
— Florence, vous développez des méthodes de traitement et d’analyse d’images et vous vous êtes peu à peu spécialisée dans le domaine de l’imagerie de télédétection. Vous travaillez sur le traitement des images en intelligence artificielle, notamment pour améliorer la qualité et donc l’exploitation des données acquises par les satellites. En quoi cela consiste-t-il précisément ?
Notre rôle est de développer des méthodes pour améliorer les données, des images en ce qui nous concerne, ou d’extraire de l’information à partir de ces données.
Nous proposons de nouveaux algorithmes qui permettent de combiner à la fois une modélisation mathématique du problème, l’amélioration d’images ou d’extraction d’informations, et qui permettent en même temps d’intégrer des connaissances sur la physique d’acquisition des images d’une part, et d’autre part d’intégrer aussi des connaissances sur le domaine applicatif.
C’est-à-dire globalement des contraintes, par exemple sur les résultats qu’on va essayer d’obtenir. Pour résumer, nous faisons des maths, et utilisons la physique du système d’acquisition et des connaissances expertes sur le domaine d’application.
— Cela fait beaucoup de données de nature différentes donc beaucoup de compétences à mobiliser dans le traitement de ces données, j’imagine ?
On peut dire que le traitement d’image est un domaine pluridisciplinaire, puisqu’au cœur de cette discipline, on trouve les mathématiques appliquées, avec en particulier, à l’heure actuelle, la science des données,mais aussi l’informatique et également des connaissances physiques sur le système d’acquisition. C’est un peu la spécificité du traiteur d’image par rapport à un traiteur de données qui va être éventuellement agnostique par rapport à la provenance des données et la façon dont elles ont été acquises. En image, nous allons avoir des connaissances sur le capteur, sur le système d’acquisition qui permet d’enregistrer les données. Puis on va essayer, autant que possible, d’intégrer des connaissances sur le type d’application pour lequel on essaie d’extraire des informations. Donc, si on fait de l’imagerie médicale, on va introduire des connaissances sur le corps humain. Si on fait de la télédétection, on va introduire des connaissances sur la cartographie, par exemple.
— Quand vous parlez d’améliorer les données acquises, cela veut dire qu’elles ne sont pas de très bonne qualité au départ et qu’il y a donc un enjeu d’amélioration de leur qualité ?
Il peut y avoir différents enjeux par rapport à la qualité des données… on peut améliorer des données, par exemple pour essayer de réduire le temps d’acquisition. En imagerie médicale, on peut vouloir que le patient reste le moins longtemps dans le système d’acquisition ou qu’il reçoive un faible niveau de radiations.. On va donc acquérir des données de moins bonne qualité pour préserver le patient, mais ensuite les traitements, l’intelligence qu’on va mettre dans notre système vont permettre de retrouver des données d’aussi bonne qualité.
Pour ma part, je suis plutôt spécialiste de l’imagerie de télédétection et notamment de l’imagerie radar à synthèse d’ouverture, appelée imagerie SAR. Par nature, de par la physique même qui sous-tend le système d’acquisition, les données de ce type de capteur sont forcément bruitées, c’est à dire qu’il existe une grande variabilité autour de la vraie mesure physique qui nous intéresse vraiment. Donc en traitement d’image, il y a toute une branche de restauration d’image pour faire en sorte que ces images aient moins de fluctuations, qu’il n’y ait pas d’artefacts, qu’elles ne soient pas floues… Typiquement, nous allons améliorer ces images pour qu’ensuite elles soient plus faciles à exploiter et que ce soit plus simple d’extraire l’information de ces images restaurées.
— Pour être un peu plus concret, pouvez-vous nous préciser ce que l’IA peut faire dans votre domaine pour améliorer la qualité des images en amont et donc les performances dans l’utilisation qui va être faite par la suite ?
Cela peut consister à essayer de faire ce qu’on appelle de la super résolution. On a par exemple une image où les pixels sont un peu trop gros, on va essayer de mettre en œuvre des méthodes d’IA qui soient capables de retrouver de la résolution, en combinant plusieurs images ou en utilisant des exemples pour essayer de prédire qu’elle serait une image mieux résolue dans un domaine particulier. Dans ce domaine, il faut faire attention parce qu’il ne faut quand même pas créer d’information. Typiquement quand on fait de la super résolution, on va essayer d’améliorer la résolution du capteur dont on est parti.
— Vous parlez de capteurs. Ils sont j’imagine de type très divers… vous avez cité l’exemple des IRM en imagerie médicale. Vous travaillez sur les images transmises par satellites, mais on est sur un spectre très large…
Je fais partie d’une équipe qui fait du traitement d’image, et donc il y a des gens qui travaillent sur différents types de données. Ce qui nous rassemble, c’est qu’on va tous utiliser de la modélisation mathématique, de l’apprentissage statistique pour résoudre des problèmes qui sont relativement similaires, améliorer des données, extraire de l’information.
Cela va diverger notamment dans la physique d’acquisition, on ne va pas avoir les mêmes systèmes d’acquisition si on fait de l’image médicale, cérébrale avec de l’IRM, ou, comme moi, de l’imagerie satellitaire avec des satellites radar. On n’aura pas non plus les mêmes domaines d’application puisque je vais m’intéresser à des problématiques environnementales alors qu’ils vont s’intéresser à des problématiques en santé par exemple.
Mais disons que le cœur des méthodes et les modèles mathématiques utilisés vont être les mêmes.
— Concentrons-nous maintenant sur votre domaine de recherche actuel, la télédétection. D’abord pouvez-vous nous dire en quelques mots ce dont il s’agit ?
Pour simplifier, parlons d’imagerie satellitaire ou d’imagerie aérienne. Au départ, la télé-détection permet une acquisition de loin, à distance. Mais cela a pris un sens un petit peu plus restreint, l’imagerie aérienne, satellitaire ou l’imagerie acquise par des drones, par exemple.
— C’est un domaine qui se développe, de ce fait, au rythme du développement des moyens que vous venez de citer.
De très nombreux satellites sont lancés à l’heure actuelle. Alors qu’auparavant, il était extrêmement coûteux de lancer un satellite et un système d’acquisition sur ce satellite, les coûts sont désormais réduits, de nombreux acteurs commerciaux émergé sur ce marché ces dernières années.
Des compagnies sont maintenant capables de lancer des satellites, de faire de l’acquisition et qui vont essayer de développer des marchés. Alors qu’auparavant, c’étaient plutôt des groupes de pays qui étaient capables de lancer ces satellites, maintenant, il y a de plus en plus d’acteurs privés sur ce marché, qui vont développer d’autres types de services. Au départ, la télédétection est très liée à l’observation de la Terre, à des problématiques environnementales. Ces nouveaux acteurs vont s’intéresser à de nouvelles applications comme la prédiction d’activité…
Un autre grand domaine historique concerne l’activité de défense, avec des capteurs spécifiques et des données à accès restreint. Mais il y a aujourd’hui énormément de capteurs civils. L’Agence spatiale européenne (ESA), par exemple, a envoyé dans les dernières années plusieurs satellites équipés de capteurs imageurs. Ce sont les missions Sentinel avec des données radar, optiques, multi-spectrales, etc. Les données sont en libre accès pour tous les utilisateurs, quels qu’ils soient, grâce à la politique de diffusion des données de l’ESA.
— Le capteur SWOT est actif depuis le début de l’année. Pouvez-vous nous en parler ?
L’imagerie radar est une imagerie spécifique qui, en même temps, est une imagerie difficile parce qu’il y a beaucoup de bruit, cette variabilité dont j’ai parlé au début, mais elle a un potentiel énorme parce qu’elle peut être utilisée sous différentes formes en fonction du nombre d’images que nous sommes capables d’acquérir. En particulier, avec ce type d’imagerie, si vous êtes capable d’acquérir deux images dans certaines conditions, en faisant de l’interférométrie, vous pouvez remonter à une information sur la hauteur des objets à la surface de la Terre et donc calculer des modèles numériques de terrain ou des modèles numériques d’élévation. SWOT est un capteur révolutionnaire puisqu’il permet de faire de l’altimétrie, donc de mesurer la hauteur des points, non seulement sur de toutes petites fauchées, mais aussi sur de beaucoup plus grandes surfaces au sol. C’est un capteur qui va être capable de faire de l’interférométrie qu’on appelle mono-passe, c’est-à-dire qu’il va prendre deux images au même moment. Alors que d’habitude, quand on fait de l’interférométrie, le capteur passe une première fois, puis à peu près au même endroit une dizaine de jours après. Dans cette mission, il y a deux antennes qui sont mises sur un très grand mât et on acquiert simultanément les deux images. En faisant interférer ces deux images, on va pouvoir mesurer la hauteur de l’eau à la surface de la Terre, dans les rivières, dans les lacs, etc.
C’est révolutionnaire car il n’y avait pas d’instrument qui permettait une surveillance aussi précise des ressources en eau de la planète auparavant.
Nous sommes impliqués dans SWOT car avons participé aux algorithmes qui extraient les surfaces d’eau, le masque des lacs et des rivières qui va être utilisé ensuite pour calculer leur hauteur.
C’est un exemple d’application des algorithmes que nous pouvons développer en tant que traiteurs d’image pour une problématique environnementale qui va être la surveillance des ressources en eau de la Terre.
— Oui, c’est un sujet majeur pour la survie de la planète et on comprend la contribution, certes indirecte mais tout de même fondamentale, que les algorithmes peuvent apporter. Et vous avez commencé à travailler en réel sur les images ou bien les données ne sont pas encore acquises à ce moment ?
Nous avons encadré deux thèses en collaboration avec le CNES sur ce sujet, où nous avons travaillé sur des données simulées sur lesquelles nous avons mis au point les méthodes d’extraction des surfaces d’eau. Celles-ci sont maintenant appliquées sur les données réelles qui sont acquises depuis le début de la mission. Les premières images réellement diffusées ont commencé à être traitées à partir de l’été.
Nous allons continuer à travailler sur ces données, mais cette fois-ci non dans la définition de la chaîne opérationnelle comme nous avons pu le faire dans le passé, mais pour essayer d’aller plus loin dans l’exploitation de ces données. Il s’agit d’une mission en collaboration entre deux agences spatiales, la NASA et le CNES. Elles ont des contraintes opérationnelles, c’est-à-dire qu’elles doivent faire des chaînes de traitement qui soient capables d’ingérer un très grand nombre de données, de calculer les masques d’eau, de calculer les hauteurs et de donner des produits aux utilisateurs finaux.
La partie développement d’algorithmes opérationnels s’est achevée pour que les traitements puissent être mis en œuvre dès l’acquisition des données par le satellite. Maintenant que nous avons à notre disposition de vraies images, nous allons effectuer des travaux plus prospectifs pour voir si nous pourrions extraire sur de plus petites zones des informations plus précises en exploitant les images qui sont acquises.
L’idée serait de faire des algorithmes peut-être être plus coûteux et plus longs à mettre en œuvre, mais plus performants et qu’on pourra utiliser sur des zones d’intérêt plus restreintes, sur lesquelles on veut étudier plus en profondeur des phénomènes.
En résumé, il y a l’aspect à large échelle, afin que les algorithmes soient capables de tourner très vite et traiter énormément de données, et l’aspect recherche sur des zones plus petites sur lesquelles on peut extraire des informations plus précises.
— Vous parlez d’extraire des informations plus précises. Existe-il aussi des enjeux de sobriété dans l’utilisation des données, et cherchez-vous faire mieux ou aussi bien avec moins de données ?
Les traitements développés dans le cadre spécifique de SWOT n’utilisent pas d’apprentissage profond, donc ils sont sobres en termes de temps de calcul pour leur mise au point (pas d’entraînement). Sur les nouvelles approches que nous envisageons, il y a effectivement des enjeux de sobriété dans l’utilisation des données. Comme nous avons beaucoup de problématiques sans données étique