Dyno Therapeutics to Present on Breakthroughs in AI Methods for AAV Capsid Design at ASGCT Annual Congress and SynBioBeta Global Synthetic Biology Conference

Compatibilità
Salva(0)
Condividi

Dyno Therapeutics, Inc., a techbio company pioneering applications of artificial intelligence to engineer AAV capsids that expand the potential of genetic medicine, today announced a Scientific Symposium and the presentation of three research abstracts, including one oral presentation, at the upcoming 27th Annual Congress of the American Society of Gene & Cell Therapy (ASGCT) being held May 7-11th, 2024 in Baltimore, Maryland. That same week Dyno Therapeutics will also be giving two talks on the theme of Machine Learning at SynBioBeta’s Global Synthetic Biology Conference held from May 6-9th, 2024 in San Jose, California.

From its inception, Dyno Therapeutics has been a leader in applying generative AI to advance the frontiers of AAV engineering. Through its AI-powered platform, the company has achieved improved gene delivery to a broad array of gene therapy targets, developing capsids to target the eye, muscle and brain. The company’s presence at both the ASGCT and SynBioBeta conferences will highlight recent successes from applying machine learning to capsid design, and explore what these applications mean for gene therapy in an era of rapid AI development.

Dyno’s ASGCT Scientific Symposium will showcase how artificial intelligence enables the design of novel capsids optimized across multiple in vivo delivery properties, and furthermore makes it possible to create synthetic capsids with high-edit distances from natural serotypes, thereby potentially allowing more patients to benefit from gene therapies. At SynBioBeta, Dyno engineers will delve into the reality of ML-driven approaches, highlighting both the promise and challenges that arise when solving real-world problems like in vivo delivery for gene therapies via capsid design.

ASGCT Dyno Scientific Symposium

Title: “AAV Capsid Design in the Era of Artificial Intelligence”
Presenter: Eric Kelsic, Ph.D., Founder and CEO, Dyno Therapeutics
Date and Time: May 9th, 2024 12:15 - 13:15 EDT
Location: Baltimore Convention Center, Room 307-310

ASGCT Research Abstracts

Oral Presentation: Applying Artificial Intelligence to Multi-Property Optimization of AAV Capsids for Neuronal Gene Delivery
Date and Time: May 10th, 2024 17:00 - 17:15 EDT
Location: Baltimore Convention Center, Ballroom 4
Abstract: #301

Poster Presentation: Non-Human Primate Evaluation of an Engineered AAV Capsid for Retinal Cell-Specific and Biofactory-Based Ocular Gene Therapies
Date and Time: May 8th, 2024 12:00 - 19:00 EDT
Abstract: #516

Poster Presentation: Expanding the Serotype Frontier: Design of Synthetic AAV Capsids with Artificial Intelligence
Date and Time: May 10th, 2024 12:00 - 19:00 EDT
Abstract: #1465

SynBioBeta Global Synthetic Biology Conference

Oral Presentation: AI-Designed Capsids: Powering a New Age of Genetic Medicine
Date and Time: May 8th, 2024 11:00 - 11:45 PDT
Location: San Jose Convention Center, Main Stage - Grand Ballroom 220A

Lunch & Learn: Generative AI is Not Enough: Bridging In-Silico to Impact—Where Hype Faces Reality
Date and Time: May 9th, 2024 12:15 - 13:00 PDT
Location: San Jose Convention Center, Meeting Room 212B

About Dyno Therapeutics

Dyno Therapeutics is solving the in vivo gene delivery challenge while partnering with gene therapy developers towards maximizing patient impact. Dyno’s platform combines AI with high-throughput experimentation to accelerate the design of AAV capsids with properties that significantly outperform current in vivo gene delivery vectors, with the goal of expanding the range of diseases treatable with genetic medicines. Dyno has partnered with leading gene therapy developers, including Astellas, Novartis, Roche, and Sarepta, and is broadly open to partnering across therapeutic areas. Dyno was founded in 2018 and is located in Watertown, Massachusetts. Visit www.dynotx.com for additional information.

Recapiti

Media:
Alice Tirard
Dyno Therapeutics
alice.tirard@dynotx.com