Silk Typhoon targeting IT supply chain | Microsoft Security Blog

Compatibilità
Salva(0)
Condividi

Executive summary:
Microsoft Threat Intelligence identified a shift in tactics by Silk Typhoon, a Chinese espionage group, now targeting common IT solutions like remote management tools and cloud applications to gain initial access. While they haven’t been observed directly targeting Microsoft cloud services, they do exploit unpatched applications that allow them to elevate their access in targeted organizations and conduct further malicious activities. After successfully compromising a victim, Silk Typhoon uses the stolen keys and credentials to infiltrate customer networks where they can then abuse a variety of deployed applications, including Microsoft services and others, to achieve their espionage objectives. Our latest blog explains how Microsoft security solutions detect these threats and offers mitigation guidance, aiming to raise awareness and strengthen defenses against Silk Typhoon’s activities.

Silk Typhoon is an espionage-focused Chinese state actor whose activities indicate that they are a well-resourced and technically efficient group with the ability to quickly operationalize exploits for discovered zero-day vulnerabilities in edge devices. This threat actor holds one of the largest targeting footprints among Chinese threat actors. Part of this is due to their opportunistic nature of acting on discoveries from vulnerability scanning operations, moving quickly to the exploitation phase once they discover a vulnerable public-facing device that they could exploit.

As a result, Silk Typhoon has been observed targeting a wide range of sectors and geographic regions, including but not limited to information technology (IT) services and infrastructure, remote monitoring and management (RMM) companies, managed service providers (MSPs) and affiliates, healthcare, legal services, higher education, defense,  government, non-governmental organizations (NGOs), energy, and others located in the United States and throughout the world.

Silk Typhoon has shown proficiency in understanding how cloud environments are deployed and configured, allowing them to successfully move laterally, maintain persistence, and exfiltrate data quickly within victim environments. Since Microsoft Threat Intelligence began tracking this threat actor in 2020, Silk Typhoon has used a myriad of web shells that allow them to execute commands, maintain persistence, and exfiltrate data from victim environments.

As with any observed nation-state threat actor activity, Microsoft has directly notified targeted or compromised customers, providing them with important information needed to secure their environments. We’re publishing this blog to raise awareness of Silk Typhoon’s recent and long-standing malicious activities, provide mitigation and hunting guidance, and help disrupt operations by this threat actor.

Recent Silk Typhoon activity

Supply chain compromise

Since late 2024, Microsoft Threat Intelligence has conducted thorough research and tracked ongoing attacks performed by Silk Typhoon. These efforts have significantly enhanced our understanding of the actor’s operations and uncovered new tradecraft used by the actor. In particular, Silk Typhoon was observed abusing stolen API keys and credentials associated with privilege access management (PAM), cloud app providers, and cloud data management companies, allowing the threat actor to access these companies’ downstream customer environments. Companies within these sectors are possible targets of interest to the threat actor. The observations below were observed once Silk Typhoon successfully stole the API key:

  • Silk Typhoon used stolen API keys to access downstream customers/tenants of the initially compromised company.
  • Leveraging access obtained via the API key, the actor performed reconnaissance and data collection on targeted devices via an admin account. Data of interest overlaps with China-based interests, US government policy and administration, and legal process and documents related to law enforcement investigations.
  • Additional tradecraft identified included resetting of default admin account via API key, web shell implants, creation of additional users, and clearing logs of actor-performed actions.
  • Thus far the victims of this downstream activity were largely in the state and local government, and the IT sector.

Password spray and abuse

Silk Typhoon has also gained initial access through successful password spray attacks and other password abuse techniques, including discovering passwords through reconnaissance. In this reconnaissance activity, Silk Typhoon leveraged leaked corporate passwords on public repositories, such as GitHub, and were successfully authenticated to the corporate account. This demonstrates the level of effort that the threat actor puts into their research and reconnaissance to collect victim information and highlights the importance of password hygiene and the use of multifactor authentication (MFA) on all accounts.

Initial access

Silk Typhoon has pursued initial access attacks against targets of interest through development of zero-day exploits or discovering and targeting vulnerable third-party services and software providers. Silk Typhoon has also been observed gaining initial access via compromised credentials. The software or services targeted for initial access focus on IT providers, identity management, privileged access management, and RMM solutions.

In January 2025, Silk Typhoon was also observed exploiting a zero-day vulnerability in the public facing Ivanti Pulse Connect VPN (CVE-2025-0282). Microsoft Threat Intelligence Center reported the activity to Ivanti, which led to a rapid resolution of the critical exploit, significantly reducing the period that highly skilled and sophisticated threat actors could leverage the exploit.

Lateral movement to cloud

Once a victim has been successfully compromised, Silk Typhoon is known to utilize common yet effective tactics to move laterally from on-premises environments to cloud environments. Once the threat actor has gained access to an on-premises environment, they look to dump Active Directory, steal passwords within key vaults, and escalate privileges. Furthermore, Silk Typhoon has been observed targeting Microsoft AADConnect servers in these post-compromise activities. AADConnect (now Entra Connect) is a tool that synchronizes on-premises Active Directory with Entra ID (formerly Azure AD). A successful compromise of these servers could allow the actor to escalate privileges, access both on-premises and cloud environments, and move laterally.

Manipulating service principals/applications

While analyzing post-compromise tradecraft, Microsoft identified Silk Typhoon abusing service principals and OAuth applications with administrative permissions to perform email, OneDrive, and SharePoint data exfiltration via MSGraph. Throughout their use of this technique, Silk Typhoon has been observed gaining access to an application that was already consented within the tenant to harvest email data and adding their own passwords to the application. Using this access, the actors can steal email information via the MSGraph API. Silk Typhoon has also been observed compromising multi-tenant applications, potentially allowing the actors to move across tenants, access additional resources within the tenants, and exfiltrate data.

If the compromised application had privileges to interact with the Exchange Web Services (EWS) API, the threat actors were seen compromising email data via EWS.

In some instances, Silk Typhoon was seen creating Entra ID applications in an attempt to facilitate this data theft. The actors would typically name the application in a way to blend into the environment by using legitimate services or Office 365 themes.

Use of covert networks

Silk Typhoon is known to utilize covert networks to obfuscate their malicious activities. Covert networks, tracked by Microsoft as “CovertNetwork”, refer to a collection of egress IPs consisting of compromised or leased devices that may be used by one or more threat actors. Silk Typhoon was observed utilizing a covert network that is comprised of compromised Cyberoam appliances, Zyxel routers, and QNAP devices. The use of covert networks has become a common tactic among various threat actors, particularly Chinese threat actors.

Historical Silk Typhoon zero-day exploitation

Since 2021, Silk Typhoon has been observed targeting and compromising vulnerable unpatched Microsoft Exchange servers, GlobalProtect Gateway on Palo Alto Networks firewalls, Citrix NetScaler appliances, Ivanti Pulse Connect Secure appliances, and others. While not exhaustive, below are historical zero-day vulnerabilities that Silk Typhoon was observed compromising for initial access into victim environments.

GlobalProtect Gateway on Palo Alto Networks Firewalls

In March 2024, Silk Typhoon used a zero-day exploit for CVE-2024-3400 in GlobalProtect Gateway on Palo Alto Networks firewalls to compromise multiple organizations:

  • CVE-2024-3400 – A command injection as a result of arbitrary file creation vulnerability in the GlobalProtect feature of Palo Alto Networks PAN-OS software for specific PAN-OS versions and distinct feature configurations may enable an unauthenticated attacker to execute arbitrary code with root privileges on the firewall.

Citrix NetScaler ADC and NetScaler Gateway

In early 2024, Microsoft began to observe Silk Typhoon compromising zero-day vulnerabilities within Citrix NetScaler ADC and NetScaler Gateways:

  • CVE-2023-3519 – An unauthenticated remote code execution (RCE) vulnerability affecting NetScaler (formerly Citrix) Application Delivery Controller (ADC) and NetScaler Gateway

Microsoft Exchange Servers

In January 2021, Microsoft began to observe Silk Typhoon compromising zero-day vulnerabilities in Microsoft Exchange Servers. Upon discovery, Microsoft addressed those issues and issued security updates along with related guidance (related links below):

  • CVE-2021-26855 – A server-side request forgery (SSRF) vulnerability in Exchange that could allow an attacker to send arbitrary HTTP requests and authenticate as the Exchange server.
  • CVE-2021-26857 – An insecure deserialization vulnerability in the Unified Messaging service. Insecure deserialization is where untrusted user-controllable data is deserialized by a program. Exploiting this vulnerability gave Silk Typhoon the ability to run code as SYSTEM on the Exchange server. This requires administrator permission or another vulnerability to be exploited.
  • CVE-2021-26858 – A post-authentication arbitrary file write vulnerability in Exchange. If Silk Typhoon could authenticate with the Exchange server, then it could use this vulnerability to write a file to any path on the server. It could authenticate by exploiting the CVE-2021-26855 SSRF vulnerability or by compromising a legitimate administrator’s credentials.
  • CVE-2021-27065 – A post-authentication arbitrary file write vulnerability in Exchange. If Silk Typhoon could authenticate with the Exchange server, then it could use this vulnerability to write a file to any path on the server. It could authenticate by exploiting the CVE-2021-26855 SSRF vulnerability or by compromising a legitimate administrator’s credentials.

During recent activities and historical exploitation of these appliances, Silk Typhoon utilized a variety of web shells to maintain persistence and to allow the actors to remotely access victim environments.

Hunting guidance

To help mitigate and surface various aspects of recent Silk Typhoons activities, Microsoft recommends the following:

  • Inspect log activity related to Entra Connect serversfor anomalousactivity.
  • Where these targeted applications have highly privileged accounts, inspect service principals for newly created secrets (credentials).
  • Identify and analyze any activity related to newly created applications.
  • Identify all multi-tenant applications and scrutinize authentications to them.
  • Analyze any observed activity related to use of Microsoft Graph or eDiscovery particularly for SharePoint or email data exfiltration
  • Look for newly created users on devices impacted by vulnerabilities targeted by Silk Typhoon and investigate virtual private network (VPN) logs for evidence of VPN configuration modifications or sign-in activity during the possible window of compromise of unpatched devices.

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Microsoft Sentinel customers can use the following queries to detect behavior associated with Silk Typhoon:

Customers can use the following query to detect vulnerabilities exploited by Silk Typhoon:

DeviceTvmSoftwareVulnerabilities
| where CveId in ("CVE-2025-0282")
| project DeviceId,DeviceName,OSPlatform,OSVersion,SoftwareVendor,SoftwareName,SoftwareVersion,
CveId,VulnerabilitySeverityLevel
| join kind=inner ( DeviceTvmSoftwareVulnerabilitiesKB | project CveId, CvssScore,IsExploitAvailable,VulnerabilitySeverityLevel,PublishedDate,VulnerabilityDescription,AffectedSoftware ) on CveId
| project DeviceId,DeviceName,OSPlatform,OSVersion,SoftwareVendor,SoftwareName,SoftwareVersion,
CveId,VulnerabilitySeverityLevel,CvssScore,IsExploitAvailable,PublishedDate,VulnerabilityDescription,AffectedSoftware

Recommendations

To help detect and mitigate Silk Typhoon’s activity, Microsoft recommends the following:

  • Ensure all public facing devices are patched. It’s important to note that patching a vulnerable device does not remediate any post-compromise activities by a threat actor who gained privileged access to a vulnerable device.
  • Validate any Ivanti Pulse Connect VPN are patched to address CVE-2025-0282 and run the suggested Integrity Checker Tool as suggested in their Advisory. Consider terminating any active or persistent sessions following patch cycles.
  • Defend against legitimate application and service principal abuse by establishing strong controls and monitoring for these security identities. Microsoft recommends the following mitigations to reduce the impact of this threat:
    • Audit the current privilege level of all identities, users, service principals, and Microsoft Graph Data Connect applicatio
Recapiti
stclarke